A Tight Linear Bound to the Chromatic Number of $$(P_5, K_1+(K_1\cup K_3))$$-Free Graphs
نویسندگان
چکیده
Let $$F_1$$ and $$F_2$$ be two disjoint graphs. The union $$F_1\cup F_2$$ is a graph with vertex set $$V(F_1)\cup V(F_2)$$ edge $$E(F_1)\cup E(F_2)$$ , the join $$F_1+F_2$$ E(F_2)\cup \{xy\;|\; x\in V(F_1)\hbox { } y\in V(F_2)\}$$ . In this paper, we present characterization to $$(P_5, K_1\cup K_3)$$ -free graphs, prove that $$\chi (G)\le 2\omega (G)-1$$ if G -free. Based on result, further $$ max $$\{2\omega (G),15\}$$ $$(P_5,K_1+(K_1\cup K_3))$$ graph. We also construct K_1+( (G)=2\omega (G)$$
منابع مشابه
The locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملA tight bound on the set chromatic number
The purpose of this note is to provide a tight bound on the set chromatic number of a graph in terms of its chromatic number. Namely, for all graphs G, we show that χs(G) > dlog2 χ(G)e+ 1, where χs(G) and χ(G) are the set chromatic number and the chromatic number of G, respectively. This answers in the affirmative a conjecture of Gera, Okamoto, Rasmussen and Zhang.
متن کاملA lower bound on the chromatic number of Mycielski graphs
In this work we give a new lower bound on the chromatic number of a Mycielski graph Mi. The result exploits a mapping between the coloring problem and a multiprocessor task scheduling problem. The tightness of the bound is proved for i = 1; : : : ; 8. c © 2001 Elsevier Science B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Graphs and Combinatorics
سال: 2023
ISSN: ['1435-5914', '0911-0119']
DOI: https://doi.org/10.1007/s00373-023-02642-y